
Co-Location of Solar and Agriculture: Benefits and Tradeoffs of Low-Impact Solar Development

Jordan Macknick (NREL) Laura Caspari (SoCore Energy) Rob Davis (Fresh Energy)

January 12th, 2017

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Motivation: Department of Energy SunShot Solar Goals

Motivation: Conventional Utility-Scale Solar Land Preparation Approach

Conventional site preparation activities can also be expensive

Site preparation is expected to account for 20% of utility-scale PV installed costs in 2020 (DOE 2012)

Reducing site preparation costs via low-impact site development can lead to cascading reductions in other environmental-related costs and risks

Conventional Site Preparation Practice	Current Cost Contribution	Potential Cost Reductions through Low- Impact Design	Other Cost and Performance Categories	Potential Cost Reductions through Low-Impact Design
Geotechnical Investigation	0.5% - 1.5%	0% - (25%)	Land Acquisition	5-10% reduction in land requirements
Clearing and Grubbing	1.0% - 2.0%	25% - 90%	Permitting	1-5% reduction in permitting costs
Soil stripping and stockpiling	1.0% - 2.0%	20% - 90%	O&M for weed control	2-7% reduction in O&M
Grading	3.0% - 6.0%	50% - 90%	Degradation	1-3% improvement in annual panel
Soil Compaction	1.0% - 3.0%	50% - 75%	-0	degradation
Foundation for vertical support	4.0% - 8.0%	2% - 5%	Efficiency	1-3% improvement in efficiency due to temperature impacts

NATIONAL RENEWABLE ENERGY LABORATORY

Alternate Vision: Low-Impact Solar Development

Mule deer (Odocoileus hemionus) fawn and doe – wildlife utilizing shade beneath panels.

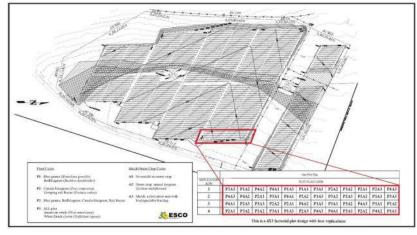
NATIONAL RENEWABLE ENERGY LABORATORY

What is Low-Impact Site Preparation?

It can mean a lot of things in different areas, bus some general concepts are:

Conventional Site Preparation	Low-Impact Site Preparation
Clearing and grubbing of soil and roots	Existing vegetation is left intact or is replaced with low-growing native vegetation species or crops
Topsoil stripping and stockpiling	Existing topsoil is left in place to allow for the successful growth of native vegetation and to promote soil health post-decommissioning of the solar project
Land grading and leveling utilizing heavy machinery	Natural contours of land are worked into the design and configuration of the solar project, with minimal if any land grading required
Soil compaction utilizing heavy machinery	Soil and vegetation are left intact to facilitate the growth of native vegetation, improved stormwater management through less runoff and erosion, and soil health
Land footprint for the foundations of vertical support structures, often including concrete	Lower land footprint for foundations of vertical support structures, often driven piles
Vegetation that supports habitat is discouraged and removed	Vegetation that supports habitat (e.g., pollinator species, other native fauna) is encouraged
O&M activities include herbicide spraying, mowing of weeds and other vegetation	Minimal O&M activities due to low-growing native vegetation species, could involve livestock grazing

Categories of low-impact solar development


- Solar Centric
 - Minimal changes to solar configuration
 - $_{\odot}\,$ Low-lying vegetation for ground cover and habitat
- Vegetation Centric
 - Minimal changes to vegetation design
 - Large spacing in solar technologies
- Co-Location and Co-Optimization
 - Solar and vegetation configurations are designed jointly for maximum dual output

Source: Macknick, Jordan, Brenda Beatty, and Graham Hill. 2013. Overview of Opportunities for Co-Location of Solar Energy Technologies and Vegetation. NREL/TO-6A20-60240, National Renewable Energy Laboratory, Golden.

NREL Wind Site: Solar-Centric Approach

Figure 1. Plot Layout - Revegetation Test Plots. Sun Edison PV Array, National Renewable Energy Laboratory (NREL) Test Site, Jefferson Co., Colorado

Source: Beatty, B., Buckner, D., McCall, J., and J. Macknick. *Forthcoming 2017. Vegetation Performance under a Solar PV Installation.* National Renewable Energy Laboratory, Golden

NATIONAL RENEWABLE ENERGY LABORATORY

How well does low-height native vegetation grow underneath and between solar panels?

CA Valley Solar Ranch: Solar-Centric Approach

How can solar installations affect endangered species' habitats and other vegetation?

Can solar projects improve habitat?

Sunflower Farm: Vegetation-Centric Approach

Sunflowers for oil production grown under panels in Wisconsin

Milwaukee Journal Sentinel, 2011

Center-Pivot Irrigation: Vegetation-Centric Approach

Yellow areas show unused and non-irrigated lands where solar could be developed

Source: Roberts, B. (2011). Potential for Photovoltaic Solar Installation in Non-Irrigated Corners of Center Pivot Irrigation Fields in the State of Colorado. NREL/TP-6A20-51330. Golden, CO: National Renewable Energy Laboratory.

NATIONAL RENEWABLE ENERGY LABORATORY

- Massachusetts Co-location Test Facility
- Innovative installation and structural design
- Multiple crop types (broccoli, kale, beans, chard, peppers)
- Varied spacing in between panels
- U-MASS-Amherst (Stephen Herbert)
 - Agriculture
 - Engineering
 - \circ Economics

University of Massachusetts Test Plot—2016 Activities

Study Design

Data Collection and Analysis

Harvesting

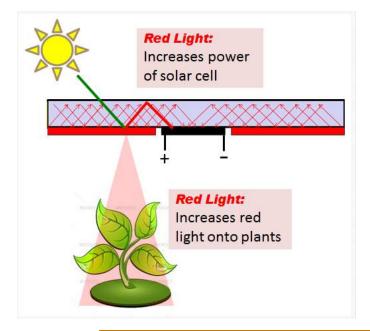
http://www.theecologist.org/siteimage/scale/0/0/387348.jpg

Ranching and grazing

Source: Ravi, S., J. Macknick, D. Lobell, C. Field, K. Ganesan, R. Jain, M. Elchinger, and B. Stoltenberg (2016), Colocation opportunities for large solar infrastructures and agriculture in drylands, *Applied Energy*, 165: 383-392.

Desert Southwest and Mexico: Agave

Source: Ravi, S., D. Lobell and C. Field (2014), Tradeoffs and synergies between biofuel production and large-scale solar infrastructure in deserts, *Environmental Science & Technology*, 48(5), 3021-3030


"We are a family-owned, first-generation business producing location-specific honey. We see a market demand for agricultural products produced in conjunction with solar energy.

"Solar arrays that include abundant pollinator habitat present an opportunity for us to grow our business."

HONEY HONEY HONEY HONEY HONEY HONEY HONEY HONEY HONEY

-Chiara and Travis Bolton, BoltonBees.com

Foraging habitat for insects that are beneficial to agriculture. Vegetation that includes forbs (flowers) increases abundance and diversity of bees and other insects that pollinate crops.

Greenhouses

Benefits to Land/Owners

- Self-generation of electricity and reduced energy bills
- Additional income stream and increased revenue security
- Compatible with grazing activities, provides shade and cover for livestock
- New market opportunities for shade tolerant crops
- Control of wind and soil erosion
- Protection of natural habitat
- Safeguarding soil health
- Improved habitat for pollinator species

Benefits to Solar Developers

- Reductions in site preparation and installation costs
- Reductions in O&M costs
- Reduced need for dust suppression
- Reduction in litigation vulnerability
- Decreased permitting time
- Increased solar energy production from cooler air zone created under modules
- Reduction in environmental mitigation investments

The driving motivation of this research is to provide quantitative data to evaluate these claims

Overview of InSPIRE-An NREL Project through U.S. Department of Energy

Meeting SunShot Cost and Deployment Targets through Innovative Site Preparation and Impact Reductions on the Environment (InSPIRE)

Low-Impact Site Development

Reduces and identifies upfront capital costs, O&M costs, and risks

Reduces environmental impacts and costs that lead to further costs

Comprehensive Mitigation Plan Identifies and works to reduce compensatory mitigation costs

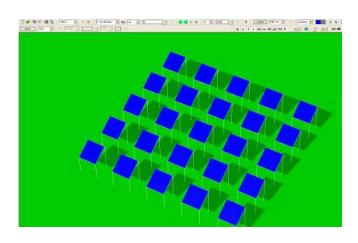
Smarter regional planning for highest conservation impact at lowest cost

Innovative Siting Locations

Reduces and identifies costs on contaminated lands and co-located agricultural projects

Expands economically viable lands to meet SunShot deployment goals

Extensive Stakeholder Engagement


Data collection Data and results validation Dissemination Frequent feedback and interaction

Smart, low-impact siting designs and planning can reduce installation and operation costs, financial risks, and environmental impacts of commercial and utility-scale solar projects.

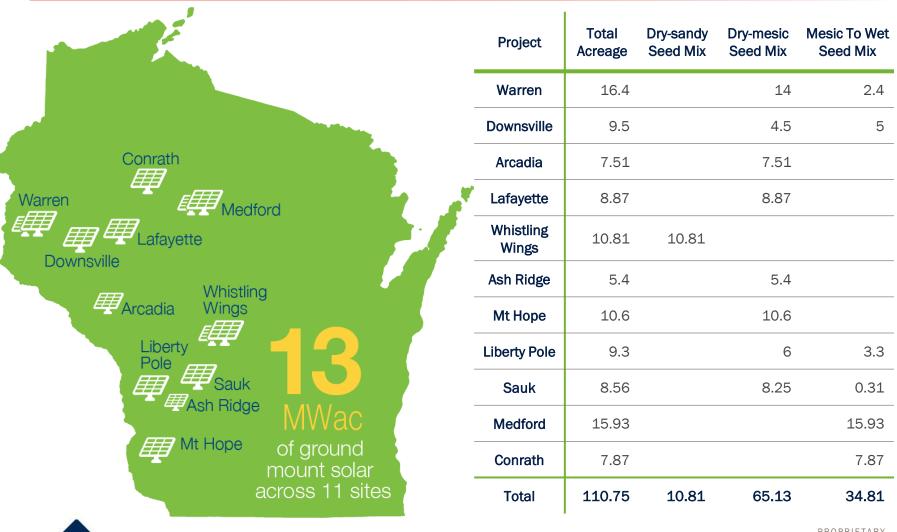
Research needs and benefits

- Robust quantitative data to back up anecdotal evidence
- Field studies
- Desktop studies
- Regional variations
- Solar configuration options
- Vegetation varieties
- Cost (O&M and initial) tradeoffs
- Long-term planning and development

Partners and Stakeholders

Experienced project team leverages expertise from across US and world

- Enhanced stakeholder engagement ensures timely and relevant products to the market
- Results integrated into NREL's soft cost and solar technology modeling tools
- Complementary, non-duplicative products informed by industry needs
- Frequent interaction and validation from industry



Closing Thoughts

- There are many opportunities for synergies between agricultural and solar energy communities
- Solar projects can be designed and constructed in ways that minimize environmental impacts and reduce costs
- Greater interaction with stakeholder groups can improve viability of solar and agriculture in the future
- Integrated planning activities can lead to widespread benefits
- Additional test plots and new data collection opportunities will improve the robustness of scientific research
- Additional stakeholder outreach is needed

Laura Caspari SoCore Energy

Dairyland Portfolio Seed Mixes – Acreage Summary

In addition to the **110.75** acres currently under construction, the additional three sites in the Dairyland portfolio will contribute another **41.5** acres, for a total of **152.25** acres of native pollinator habitat

SoCore Energy

Land equivalent to more than 92,000 homes having a 6'x12' pollinator garden.

Sandy Grass and Wildflower Mixes

Sandy Grass	Wildflower Mixes			
Side Oats Grama	Yarrow	New Jersey Tea	Golden Alexander	Gray Goldenrod
Blue Grama	Prairie Onion	Partridge Pea	Wild Bergamot	Upland Goldenrod
Kalm's Brome	Leadplant	Sand Coreopsis	Spotted Beebalm	Stiff Goldenrod
Poverty Oat Grass June Grass	Tall Thimbleweed	White Prairie Clover	Sand Evening Primrose	Calico Aster
Little Bluestem	Columbine	Purple Prairie Clover	Foxglove Beardtongue	Frost Aster
Prairie Dropseed	Prairie Sage	Silky Prairie Clover	Showy Penstemon	Arrow-leaved Aster
	Common Milkweed	Large-leaved Aster	Prairie Cinquefoil	Prairie Spiderwort
	Butterfly Weed	White Snakeroot	Prairie Rose	Hoary Vervain
	Whorled Milkweed	False Boneset	Black-eyed Susan	Heart-leaved Alexander
	Canada Milk Vetch	Bush Clover	Blue-eyed Grass	

SoCore Energy

Dry to Mesic Grass and Wildflower Mixes

Dry to Mesic Grass	Wildflower Mixes			
Side Oats Grama	Yarrow	Canada Milk Vetch	Stiff Goldenrod	Drummond's Aster
Blue Grama	Leadplant	Partridge Pea	Wild Bergamot	Calico Aster
Kalm's Brome	Tall	White Prairie	Prairie	
Plains Oval Sedge	Thimbleweed	Clover	Cinquefoil	Frost Aster
Sprengel's Sedge	Columbine	Purple Prairie Clover	Prairie Rose	Arrow-leaved Aster
Poverty Oat Grass	Prairie Sage	Large-leaved Aster	Black-eyed Susan	Prairie Spiderwort
Bottlebrush Grass	Common			
Silky Wild Rye	Milkweed	White Snakeroot	Gray Goldenrod	Hoary Vervain
June Grass	Butterfly Weed	False Boneset	Upland	Heart-leaved
Little Bluestem			Goldenrod	Alexander
Prairie Dropseed	Whorled Milkweed	Bush Clover		

Mesic to Wet Grass and Wildflower Mixes

Mesic to Wet Grass		Wildflower Mixes	
Side Oats Grama	Fox Sedge	Yarrow	Wild Bergamot
Small Yellow Fox Sedge	Poverty Oatgrass	Nodding Onion	Marsh Betony
Plains Oval Sedge	Bottlebrush Grass	Columbine	Mountain Mint
Bottlebrush Sedge	Silky Wild Rye	Canada Milk Vetch	Black-eyed Susan
Eringed Sedge	Rattlesnake Manna Grass	Nodding Bur Marigold	Mad Dog Skull Cap
Fringed Sedge		Purple Prairie Clover	Ohio Goldenrod
Bristly Cattail Sedge	Fowl Manna Grass	Large-leaved Aster	Stiff Goldenrod
Porcupine Sedge	Dudley's Rush	Grass-leaved Goldenrod	Drummond's Aster
Sprengel's Sedge	Soft Rush	White Snakeroot	Calico Aster
Pointed Broom Sedge	Fox Sedge	Bush Clover	Frost Aster
Stalk-grain Sedge		Monkey Flower	

Benefits of using a diverse native pollinator seed mix

- Resiliency to variable climate
- Tolerant of changing sun exposure
- Increases storm water infiltration
- Insulation / reduce risk of frost heave
- Improves quality of storm water runoff
- Minimal maintenance
- Reduce use of pesticides
- Deters growth of non-native species
- Creation of pollinator habitat

PROPRIETARY

SoCore Energy

Rob Davis Fresh Energy

A standard practice

Solar Site Vegetation & Performance

- Performance profile for solar site vegetation:
 - Resilient to droughts
 - Resilient to intense downpours
 - Insulation / reduce risk of frost heave
 - Minimal maintenance
 - Low-growing
 - Full-sun & shade tolerant
 - Beneficial to the pollinators needed for agriculture

Benefits of Performance Vegetation on Solar Sites

- Mowing is nearly eliminated after the site's first four years
- Sites that benefit pollinators are particularly attractive to corporate sustainability executives (buyers)
- Stormwater performance of deep-rooted native plants
- Opportunity for significant increase in public support during siting phase and ongoing beekeepers, fruit/vegetable farmers, and other conservationists
- Insulation / reduce risk of frost heave

the WHITE HOUSE PRESIDENT BARACK OBAMA

Announcing New Steps to Promote Pollinator Health

MAY 19, 2015

Summary: Pollinators are critical to the Nation's economy, food

security, and environmental health.

Poor Pollination

- 70% of crops
- 100's of billions / year

Source: Gund Center for Ecological Economics

Pollinator Habitat Benefits Agriculture

- Nature Conservancy completed an economic analysis of wild pollinator contribution to 10 major crops.
- In nearly all cases and especially for tomatoes, blueberries, melons, cucumbers, squash, apples, peaches, and bell peppers, <u>gross revenues</u> increase directly because of the installation of pollinator habitat—and that's even after subtracting out implementation costs.

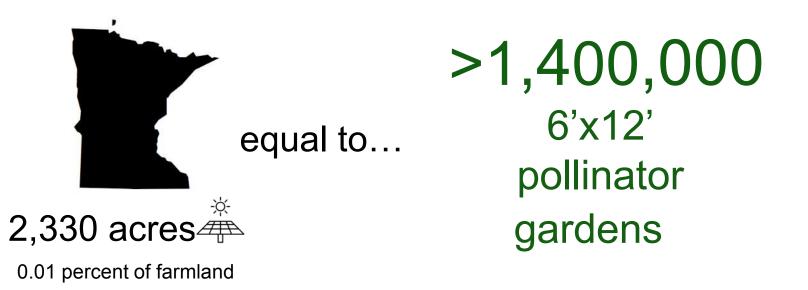

http://bit.ly/BeesCrops

Table shows the value of production attributable to wild pollinators in New Jersey (based on average prices and yields, 2007-2011).

Сгор	from wild pollinators	78(M) (19)	production boost
Squash	81%	\$9,640,000	\$1,171,300
Tomatoes	18%	\$5,530,000	\$149,300
Blueberries	10%	\$8,213,000	\$123,200
Bell Peppers	10%	\$3,301,000	\$49,500
Watermelons	10%	\$343,000	\$5,100
Peaches	9%	\$3,142,000	\$42,400
Apples	9%	\$2,008,000	\$27,100
Cucumbers	9%	\$1,281,000	\$17,300
Cantaloupes	8%	\$689,000	\$800
Soybeans	5%	\$1,583,000	\$11,900

Economic analysis of wild pollinator contribution to 10 major crops, Nature Conservancy. http://bit.ly/BeesCrops

Pollinator-Friendly Solar Seeded in 2016

Rob Davis @robfargo

Ag Leaders Established a Vegetation Standard for Pollinator-friendly Solar

State Rep. Rod Hamilton (R) Chair, Agriculture Finance Committee Member, Agriculture Policy Committee

Statute 216B.1642

State Senator Dan Sparks (DFL) Chair, Agriculture Policy Committee Member, Commerce & Consumer Protection Policy and Finance Committee

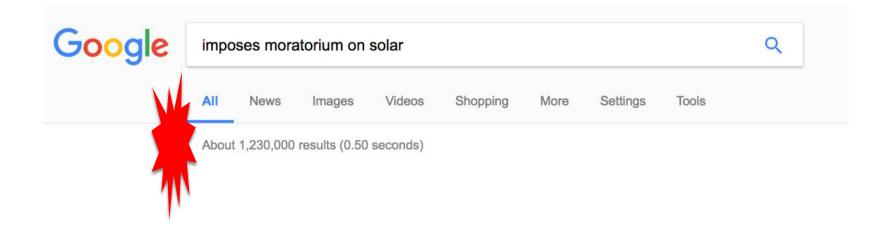
Subd. 2. Recognition of beneficial habitat. An owner of a solar site implementing solar site management practices under this section may claim that the site provides benefits to gamebirds, songbirds, and pollinators only if the site adheres to guidance set forth by the pollinator plan...

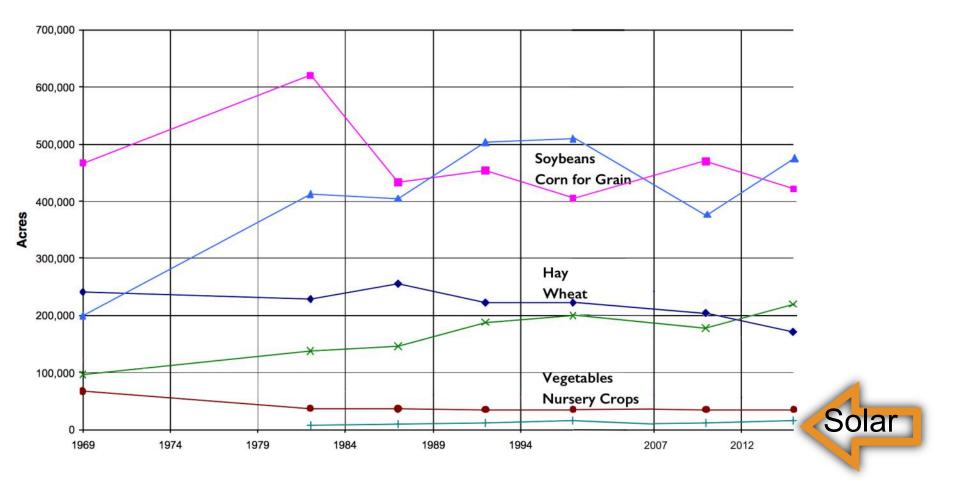
Dr. Karen Oberhauser

University of Minnesota

Dr. Marla Spivak

University of Minnesota


Solar Site I	Ollinator Ha	bitat Assessme	ant Form
		r/wildlife habitat benefit	
Water & Soil	is to claim polimator	if whome habitat benefit	
ACSOLUCION A			
1. PERCENT OF SITE DOMINATED BY W			T COMPONENTS ON-SITE
1-15 percent	10 points	(check/add all that ap	piy)
16-30 percent	15 points	At least 2% milk	weed cover 5 points
31-45 percent	20 points	At least 3% nati	ve shrub cover 5 points
46-60 percent	25 points	Detailed mgmt	. plan developed 10 points
61+ percent	30 points	(see example pl	an)
Total points		3 or more signs	legible at twenty 5 points
Note: Project may have "array" mixe			ating pollinator
forb dominance should be averaged		. Forb friendly habitat	
dominance should exclude native rag			Total points
2. % OF SITE DOMINATED BY NATIVE S	PECIES COVER	7. INSECTICIDE RISK	% of project adjacent to insection
1-25%	5 points		ic cropland, or on-site use)
26-50%	10 points	1-25%	-10 points
51-75%.	15 points	26-50%	-15 points
76-100%	20 points	51-75%	
Total points		76-100%	-20 points
AND INCOMPARIANCE CONTRACTOR AND		On-site use	-25 points
3. COVER DIVERSITY (# of plant specie		U On-site use	-30 points
1-9 species	5 points		Total points
10-19 species	10 points		
20-39 species	15 points		herbicide being used for weed
>40 species	20 points	control	
Total points			
Exclude invasives from species totals.			Grand Total
4. SEASONS WITH AT LEAST 3 BLOOM	ING SPECIES		
PRESENT (check/add all that apply)		Provides Exception	nal Habitat 85 TO 100
Spring	10 points	Meets Pollinator S	itandards 70-84
Summer	5 points		
Fall	5 points	Developer:	
Total points		beveloper.	
See BWSR Pollinator Toolbox for Inform		Project Location:	
bloom season			
5. AVAILABLE HABITAT COMPONENTS	WITHIN .25 MILES	Project Size:	
(check/add all that apply)			
Native bunch grasses for nesting	5 points	Target Seeding Dat	te:
Trees and shrubs for nesting	5 points		-



Solar array, Ohio

Photo: Janelle Patterson, Marietta Times

Farmland in Maryland

Jobs for the Rural Economy

After

Turfgrass

Maximum root depth 3-6 inches

Native Grasses & Forbs

Common root depth 4-6 feet

					1									
Kentucky Blue Grass	Little Blue Stem	Blue Gramma	Purple Prairie	June Grass	Cylindric Blazing Star	Buffalo Grass	Blue Gramma	Little Blue Stem	June Grass	Buffalo Grass	Pale Purple	Prairie Dropseed	Side Oats Gramma	False Boneset
Poa	Andropogon	Bouteloua	Clover	Koeleria	Liatris	Buchloe	Bouteloua	Andropogon	Koeleria	Buchloe	Coneflower	Sporobolus	Bouteloua	Kuhnia
pratensis	scoparius	gracilis	Petalostemum	cristata	cylindracea	dactyloides	gracilis	scoparius	cristata	dactyloides	Echinacea pallida	heterolepis		eupatorioides

Project Highlights

Aurora Solar 100 MW distributed solar array 16 sites 1,000 acres

Pollinator-friendly seed mix used on all sites

Sample General Composition of Seed Mix for use within Solar Panel Array

No Mow Turf with Forbs; Seeding Rate: 42 seeds per Sq. ft./ac	Height	Bloom Time	oz./acre	Seeds/oz.	Seeds/sq. ft.
Cover Crop	2				
Avena sativa (Oats) ¹	3'	NA	20lbs/ac	1,100	8.9
Grasses					
Bouteloua curtipendula (Side oats grama) PLS	1-2'	Jun-Nov	8.0	6000.00	1.10
Bouteloua gracilis (Blue grama) PLS	1'	Jul-Oct	4.0	40,000.00	3.67
Buchloe dactyloides (Buffalo grass-BOWIE cultivar) PLS	5"	Apr-Dec	128.0	3,600.00	10.58
Carex bicknelli (Copper shouldered oval sedge) PLS	1-3'	Mar-May	2.0	17000.00	0.78
Koeleria macrantha (Junegrass) PLS	10-20"	Apr-Jun	4.0	200,000.00	18.37
Sporobolus heterolepis (Prairie Dropseed) PLS	2-3'	Jun-Aug	4.0	16,000	1.47
Forbs					
Allium canadense (Wild garlic)	1-2'	May-Jul	8.0	560.00	0.10
Allium stellatum (Prairie onion)	8-18"	Jul-Aug	1.00	11,000.00	0.25
Anemone canadensis (Canada Anemone)	1-2'	May-Jun	1.00	8,000.00	0.18
Anemone patens (Pasqueflower)	3-18"	Apr-May	1.00	18,000.00	0.41
Asclepias tuberosa (Butterfly-weed)	1-2'	Jun-Aug	2.00	4,300.00	0.20
Echinacaea angustifolia (Narow leaved Purple Coneflower)	1-2'	Jun-Jul	2.00	7000	0.32
Sisyrinchium campestre (Prairie blue-eyed grass)	4-16"	May-Jun	1.00	45,000.00	1.03
Solidago nemoralis (Gray goldenrod)	1-2'	Aug-Oct	0.50	300,000.00	3.44

North Star Solar 100 MW solar array 1,000 acres Largest single-site array in the Midwest

Pollinator-friendly seed mix from Minnesota Native Landscapes used throughout

			% of	PLS		
	Scientific Name	Common Name	Mix	lbs/ac	Total PLS lbs	Seeds/ Sq Ft
irasses:	Bouteloua curtipendula	Side-Oats Grama	35.00	2.80	2.80	10.23
	Bouteloua gracilis	Blue Grama	12.00	0.96	0.96	14.10
	Carex bicknellii	Bicknell's Sedge	1.50	0.12	0.12	0.75
	Carex radiata	Eastern Star Sedge	1.50	0.12	0.12	1.81
	Carex vulpinoidea	Fox Sedge	1.25	0.10	0.10	2.98
	Koeleria macrantha	Junegrass	1.25	0.10	0.10	7.35
	Schizachyrium scoparium	Little Bluestem	14.50	1.16	1.16	6.39
	Sporobolus cryptandrus	Sand Dropseed	4.00	0.32	0.32	23.51
	Sporobolus heterolepis	Prairie Dropseed	5.00	0.40	0.40	2.35
orbs:	Achillea millefolium	Yarrow	0.40	0.03	0.03	2.06
	Agastache foeniculum	Fragrant Giant Hyssop	0.25	0.02	0.02	0.66
	Allium stellatum	Prairie Onion	0.50	0.04	0.04	0.16
	Anemone canadensis	Canada Anemone	0.25	0.02	0.02	0.06
	Aquilegia canadensis	Columbine	0.25	0.02	0.02	0.28
	Asclepias syriaca	Common Milkweed	0.75	0.06	0.06	0.09
	Asclepias tuberosa	Butterfly Milkweed	0.75	0.06	0.06	0.09
	Asclepias verticillata	Whorled Milkweed	0.25	0.02	0.02	0.08
	Aster oolentangiensis	Sky-Blue Aster	1.25	0.10	0.10	2.94
	Aster laevis	Smooth Blue Aster	0.75	0.06	0.06	1.21
	Aster lateriflorus	Calico Aster	0.80	0.06	0.06	5.88
	Astragalus canadensis	Canada Milk Vetch	0.75	0.06	0.06	0.37
	Coreopsis palmata	Prairie Coreopsis	0.50	0.04	0.04	0.15
	Dalea candida	White Prairie Clover	3.00	0.24	0.24	1.67
	Dalea purpureum	Purple Prairie Clover	3.00	0.24	0.24	1.32
	Desmodium canadense	Canada Tick Trefoil	1.00	0.08	0.08	0.16
	Helianthus pauciflorus	Stiff Sunflower	0.40	0.03	0.03	0.05
	Monarda fistulosa	Wild Bergamot	0.75	0.06	0.06	1.54
	Liatris aspera	Rough Blazing Star	0.75	0.06	0.06	0.35
	Lupinus perennis	Wild Lupine	0.25	0.02	0.02	0.01
	Penstemon gracilis	Slender Beardtongue	0.40	0.03	0.03	7.05
	Potentilla arguta	Prairie Cinquefoil	0.25	0.02	0.02	1.69
	Pycnanthemum virginianum	Mountain Mint	0.50	0.04	0.04	3.23
	Ratibida columnifera	Long-Headed Coneflower	1.00	0.08	0.08	1.23
	Rudbeckia hirta	Black Eyed Susan	1.25	0.10	0.10	3.38
	Solidago nemoralis	Old Field Goldenrod	0.50	0.04	0.04	4.41
	Solidago rigida	Stiff Goldenrod	1.50	0.12	0.12	1.81
	Verbena stricta	Hoary Vervain	1.25	0.10	0.10	1.03
	Zizia aurea	Golden Alexanders	0.75	0.06	0.06	0.24
Cover Crop:	Triticum aestivum	Winter Wheat		10.00	10.00	

Species subject to change based on price and availability at the time of planting

In development planning: Sunnee Bee Solar 20 MW solar array 167 acres

Pollinator-friendly seed mix from Ernst Conservation Seeds

B-Corporation

Eastern Shore, Maryland

Minnesota Power & Camp Ripley

Solar Farm Short Native Mix	Species	PLS/acre	Height(in)
Short height general dry	Sideoats Grama	3.00	18-30
prairie native mix.	Little Bluestem	3.00	18-30
	Buffelograss	3.00	18-30
	Kalm's Brome	0.50	24-36
	Blue Grama	1.00	12-15
	Junegrass	0.25	6-12
	Prairie Dropseed	0.25	18-30
	Grass Total	11.00	
· · · · ·	Black Eyed Susan	0.20	18-24
	Purple Prairie Clover	0.20	18-24
	Partridge Pea	0.20	18-24
ter de la facto	Purple Coneflower	0.20	18-24
	Yarrow	0.01	12-18
	White Prairie Clover	0.10	18-24
$A_{\rm eff} = 1.0$.	Large Flowered Beard Tongue	0.04	12-24
	Butterfly Milkweed	0.05	18-24
į	Total PLS/Acre	1.00	
	Oats	25.00	
	Total PLS/Acre	37.00	

Connexus Energy Performance Characteristics:

- 1. Visual appeal
- 2. Maintenance free for existing grounds crew
- 3. No loss of solar performance
- 4. Ecological services highlighted in company marketing materials

Vegetation seeded and maintained by Prairie Restorations, Inc Seeded in Oct. 2014. Pictured in July, 2016.

A member update.

September 2016

Pollinator haven at Connexus solar garden

For honey bees and butterflies, it doesn't get much better than the pollinatorfriendly habitat found in Connexus Energy's community solar garden. Recently, Fresh Energy, with the help of Prairie Restoration, assessed our site, and we received a perfect 100 score on the Solar Site Pollinator Habitat Assessment. That means our solar garden not only provides solar energy for our members, but it also provides exceptional habitat to help struggling pollinators.

What is pollinator-friendly habitat?

Pollinators, such as honey bees, butterflies, hummingbirds, and bats, assist plants in reproduction by transferring pollen. This allows the plant to produce berries, nuts, and other foods important to the survival of many species of wildlife and the world's food supply. Recently, there have been many reports of a steady decline in the population of pollinators, due in large part to the loss of habitat they need to survive.

Thank you

Jordan Macknick National Renewable Energy Lab Jordan.Macknick@nrel.gov www.nrel.gov

Laura Caspari SoCore Energy Icaspari@socoreenergy.com www.socoreenergy.com

Rob Davis Fresh Energy davis@fresh-energy.org www.fresh-energy.org